4 research outputs found

    A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances

    Get PDF
    Xin G, Lin H-C, Smith J, Cebe O, Mistry M. A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. In: IEEE/RSJ Int. Conf. on Robotics and Automation. 2018.Legged robots have many potential applications in real-world scenarios where the tasks are too dangerous for humans, and compliance is needed to protect the system against external disturbances and impacts. In this paper, we propose a model-based controller for hierarchical tasks of legged systems subject to external disturbance. The control framework is based on projected inverse dynamics controller, such that the control law is decomposed into two orthogonal subspaces, i.e., the constrained and the unconstrained subspaces. The unconstrained component controls multiple desired tasks with impedance responses. The constrained space controller maintains the contact subject to unknown external disturbances, without the use of any force/torque sensing at the contact points. By explicitly modelling the external force, our controller is robust to external disturbances and errors arising from incorrect dynamic model information. The main contributions of this paper include (1) incorporating an impedance controller to control external disturbances and allow impedance shaping to adjust the behaviour of the motion under external disturbances, (2) optimising contact forces within the constrained subspace that also takes into account the external disturbances without using force/torque sensors at the contact locations. The techniques are evaluated on the ANYmal quadruped platform under a variety of scenarios

    Robust Footstep Planning and LQR Control for Dynamic Quadrupedal Locomotion

    Get PDF
    In this paper, we aim to improve the robustness of dynamic quadrupedal locomotion through two aspects: 1) fast model predictive foothold planning, and 2) applying LQR to projected inverse dynamic control for robust motion tracking. In our proposed planning and control framework, foothold plans are updated at 400 Hz considering the current robot state and an LQR controller generates optimal feedback gains for motion tracking. The LQR optimal gain matrix with non-zero off-diagonal elements leverages the coupling of dynamics to compensate for system underactuation. Meanwhile, the projected inverse dynamic control complements the LQR to satisfy inequality constraints. In addition to these contributions, we show robustness of our control framework to unmodeled adaptive feet. Experiments on the quadruped ANYmal demonstrate the effectiveness of the proposed method for robust dynamic locomotion given external disturbances and environmental uncertainties

    Online dynamic trajectory optimization and control for a quadruped robot

    Get PDF
    Legged robot locomotion requires the planning of stable reference trajectories, especially while traversing uneven terrain. The proposed trajectory optimization framework is capable of generating dynamically stable base and footstep trajectories for multiple steps. The locomotion task can be defined with contact locations, base motion or both, making the algorithm suitable for multiple scenarios (e.g., presence of moving obstacles). The planner uses a simplified momentum based task space model for the robot dynamics, allowing computation times that are fast enough for online replanning. This fast planning capability also enables the quadruped to accommodate for drift and environmental changes. The algorithm is tested on simulation and a real robot across multiple scenarios, which includes uneven terrain, stairs and moving obstacles. The results show that the planner is capable of generating stable trajectories in the real robot even when a box of 15 cm height is placed in front of its path at the last moment

    Variable autonomy of whole-body control for inspection and intervention in industrial environments using legged robots

    Get PDF
    The deployment of robots in industrial and civil scenarios is a viable solution to protect operators from danger and hazards. Shared autonomy is paramount to enable remote control of complex systems such as legged robots, allowing the operator to focus on the essential tasks instead of overly detailed execution. To realize this, we propose a comprehensive control framework for inspection and intervention using a legged robot and validate the integration of multiple loco-manipulation algorithms optimised for improving the remote operation. The proposed control offers 3 operation modes: fully automated, semi-autonomous, and the haptic interface receiving onsite physical interaction for assisting teleoperation. Our contribution is the design of a QP-based semi-analytical whole-body control, which is the key to the various task completion subject to internal and external constraints. We demonstrate the versatility of the whole-body control in terms of decoupling tasks, singularity tolerance and constraint satisfaction. We deploy our solution in field trials and evaluate in an emergency setting by an E-stop while the robot is clearing road barriers and traversing difficult terrains
    corecore